
Ianvs
Release v0.1

KubeEdge SIG AI

Sep 20, 2023

INTRODUCTION

1 Distributed Synergy AI Benchmarking 3

2 Quick Start 7

3 What is next 11

4 How to install Ianvs 13

5 How to test algorithms with Ianvs 15

6 Industrial defect detection: the PCB-AoI dataset 23

7 Single task learning: FPN 27

8 Incremental learning: BasicIL-FPN 33

9 How to config algorithm 37

10 How to config testenv 43

11 How to config benchmarkingjob 47

12 How to use Ianvs command line 53

13 Leaderboard of single task learning 55

14 Leaderboard of incremental learning 57

15 Testing single task learning in industrial defect detection 59

16 Testing incremental learning in industrial defect detection 63

17 How to contribute test environments 71

18 How to contributrbute an algorithm to Ianvs 73

19 How to contribute test reports or leaderboards 75

20 Roadmap 77

21 Ianvs v0.1.0 release 79

22 RELATED LINKs 81

i

23 Indices and tables 83

ii

Ianvs, Release v0.1

Ianvs is a distributed synergy AI benchmarking project incubated in KubeEdge SIG AI. According to the landing
challenge survey 2022 in KubeEdge SIG AI, when it comes to the landing of distributed synergy AI projects, developers
suffer from the lack of support on related datasets and algorithms; while end users are lost in the sea of mismatched
solutions. That limits the wide application of related techniques and hinders a prosperous ecosystem of distributed
synergy AI.

Confronted with these challenges, Ianvs aims to test the performance of distributed synergy AI solutions following
recognized standards, in order to facilitate more efficient and effective development. More detailedly, Ianvs prepares
not only test cases with datasets and corresponding algorithms, but also benchmarking tools including simulation
and hyper-parameter searching. Ianvs also reveals best practices for developers and end users with presentation tools
including leaderboards and test reports.

The scope of Ianvs is mainly two folds.

First, Ianvs aims to provide end-to-end benchmark toolkits across devices, edge nodes, and cloud nodes based on
typical distributed-synergy AI paradigms and applications. - Tools to manage test environment. For example, it would
be necessary to support the CRUD (Create, Read, Update, and Delete) actions in test environments. Elements of
such test environments include algorithm-wise and system-wise configuration. - Tools to control test cases. Typical
examples include paradigm templates, simulation tools, and hyper-parameter-based assistant tools. - Tools to manage
benchmark presentation, e.g., leaderboard and test report generation.

Second, Ianvs also cooperates with other organizations or communities, e.g., in KubeEdge SIG AI, to establish compre-
hensive benchmarks and developed related applications, which can include but are not limited to - Dataset collection,
re-organization, and publication - Formalized specifications, e.g., standards - Holding competitions or coding events,
e.g., open source promotion plan - Maintaining solution leaderboards or certifications for commercial usage

Start your journey on Ianvs with the following links:

INTRODUCTION 1

Ianvs, Release v0.1

2 INTRODUCTION

CHAPTER

ONE

DISTRIBUTED SYNERGY AI BENCHMARKING

Edge computing emerges as a promising technical framework to overcome the challenges in cloud computing. In this
machine-learning era, the AI application becomes one of the most critical types of applications on the edge. Driven by
the increasing computation power of edge devices and the increasing amount of data generated from the edge, edge-
cloud synergy AI and distributed synergy AI techniques have received more and more attention for the sake of device,
edge, and cloud intelligence enhancement.

Nevertheless, distributed synergy AI is at its initial stage. For the time being, the comprehensive evaluation standard
is not yet available for scenarios with various AI paradigms on all three layers of edge computing systems. According
to the landing challenge survey 2022, developers suffer from the lack of support on related datasets and algorithms;
while end users are lost in the sea of mismatched solutions. That limits the wide application of related techniques
and hinders a prosperous ecosystem of distributed synergy AI. A comprehensive end-to-end distributed synergy AI
benchmark suite is thus needed to measure and optimize the systems and applications.

Ianvs thus provides a basic benchmark suite for distributed synergy AI, so that AI developers and end users can benefit
from efficient development support and best practice discovery.

1.1 Goals

For developers or end users of distributed synergy AI solutions, the goals of the distributed synergy AI framework are:

• Facilitating efficient development for developers by preparing

– test cases including dataset and corresponding tools

– benchmarking tools including simulation and hyper-parameter searching

• Revealing best practices for developers and end users

– presentation tools including leaderboards and test reports

1.2 Scope

The distributed synergy AI benchmarking ianvs aims to test the performance of distributed synergy AI solutions fol-
lowing recognized standards, in order to facilitate more efficient and effective development.

The scope of ianvs includes

• Providing end-to-end benchmark toolkits across devices, edge nodes, and cloud nodes based on typical
distributed-synergy AI paradigms and applications.

– Tools to manage test environment. For example, it would be necessary to support the CRUD (Create, Read,
Update, and Delete) actions in test environments. Elements of such test environments include algorithm-
wise and system-wise configuration.

3

Ianvs, Release v0.1

– Tools to control test cases. Typical examples include paradigm templates, simulation tools, and hyper-
parameter-based assistant tools.

– Tools to manage benchmark presentation, e.g., leaderboard and test report generation.

• Cooperation with other organizations or communities, e.g., in KubeEdge SIG AI, to establish comprehensive
benchmarks and developed related applications, which can include but are not limited to

– Dataset collection, re-organization, and publication

– Formalized specifications, e.g., standards

– Holding competitions or coding events, e.g., open source promotion plan

– Maintaining solution leaderboards or certifications for commercial usage

Targeting users

• Developers: Build and publish edge-cloud collaborative AI solutions efficiently from scratch

• End users: view and compare distributed synergy AI capabilities of solutions

The scope of ianvs does NOT include to

• Re-invent existing edge platform, i.e., kubeedge, etc.

• Re-invent existing AI frameworks, i.e., tensorflow, pytorch, mindspore, etc.

• Re-invent existing distributed synergy AI framework, i.e., kubeedge-sedna, etc.

• Re-invent existing UI or GUI toolkits, i.e., prometheus, grafana, matplotlib, etc.

1.3 Design Details

1.3.1 Architecture and Modules

The architectures and related concepts are shown in the below figure. The ianvs is designed to run within a single node.
Critical components include

• Test Environment Manager: the CRUD of test environments serving for global usage

• Test Case Controller: control the runtime behavior of test cases like instance generation and vanish

– Generation Assistant: assist users to generate test cases based on certain rules or constraints, e.g., the
range of parameters

– Simulation Controller: control the simulation process of edge-cloud synergy AI, including the in-
stance generation and vanishment of simulation containers

• Story Manager: the output management and presentation of the test case, e.g., leaderboards

4 Chapter 1. Distributed Synergy AI Benchmarking

Ianvs, Release v0.1

Ianvs includes Test-Environment Management, Test-case Controller, and Story Manager in the Distributed Synergy AI
benchmarking toolkits, where

1. Test-Environment Manager basically includes

• Algorithm-wise configuration

– Public datasets

– Pre-processing algorithms

– Feature engineering algorithms

– Post-processing algorithms like metric computation

• System-wise configuration

– Overall architecture

– System constraints or budgets

∗ End-to-end cross-node

∗ Per node

2. Test-case Controller includes but is not limited to the following components

• Templates of common distributed-synergy-AI paradigms, which can help the developer to prepare their
test case without too much effort. Such paradigms include edge-cloud synergy joint inference, incremental
learning, federated learning, and lifelong learning.

• Simulation tools. Develop simulated test environments for test cases

– Note that simulation tools are not yet available in early versions until v0.5

– It is NOT in the scope of this open-sourced Ianvs to simulate different hardware devices, e.g., simu-
lating NPU with GPU and even CPU

• Other tools to assist test-case generation. For instance, prepare test cases based on a given range of hyper-
parameters.

3. Story Manager includes but is not limited to the following components

• Leaderboard generation

• Test report generation

1.3. Design Details 5

guides/images/ianvs_arch.png

Ianvs, Release v0.1

1.3.2 Definitions of Objects

Quite a few terms exist in ianvs, which include the detailed modules and objects. To facilitate easier concept under-
standing, we show a hierarchical table of terms in the following figures, where the top item contains the items below
it.

The concept definition of modules has been shown in the Architecture Section. In the following, we introduce the
concepts of objects for easier understanding.

• Benchmark: standardized evaluation process recognized by the academic or industry.

• Benchmarking Job: the serving instance for an individual benchmarking with ianvs, which takes charge of the
lifetime management of all possible ianvs components.

– Besides components, a benchmarking job includes instances of a test environment, one or more test cases,
a leaderboard, or a test report.

– Different test environments lead to different benchmarking jobs and leaderboards. A benchmarking job can
include multiple test cases

• Test Object: the targeted instance under benchmark testing. A typical example would be a particular algorithm
or system.

• Test Environment: setups or configurations for benchmarking, typically excluding the test object.

– It can include algorithm-wise and system-wise configurations.

– It serves as the unique descriptor of a benchmarking job. Different test environments thus lead to different
benchmarking jobs.

• Test Case: the executable instance to evaluate the performance of the test object under a particular test envi-
ronment. Thus, the test case is usually generated with a particular test environment and outputs testing results if
executed.

– It is the atomic unit of a benchmark. That is, a benchmarking job can include quite a few test cases.

• Attribute (Attr.) of Test Case: Attributes or descriptors of a test case, e.g., id, name, and time stamp.

• Algorithm Paradigm: acknowledged AI process which usually includes quite a few modules that can be im-
plemented with replaceable algorithms, e.g., federated learning which includes modules of local train and global
aggregation.

• Algorithm Module: the component of the algorithm paradigm, e.g., the global aggregation module of the
federated learning paradigm.

• Leaderboard: the ranking of the test object under a specific test environment.

– The local node holds the local leaderboard for private usage.

– The global leaderboard is shared (e.g., via GitHub) by the acknowledged organization.

• Test Report: the manuscript recording how the testing is conducted.

6 Chapter 1. Distributed Synergy AI Benchmarking

guides/images/ianvs_concept.png

CHAPTER

TWO

QUICK START

Welcome to Ianvs! Ianvs aims to test the performance of distributed synergy AI solutions following recognized stan-
dards, in order to facilitate more efficient and effective development. Quick start helps you to test your algorithm on
Ianvs with a simple example of industrial defect detection. You can reduce manual procedures to just a few steps so
that you can build and start your distributed synergy AI solution development within minutes.

Before using Ianvs, you might want to have the device ready:

• One machine is all you need, i.e., a laptop or a virtual machine is sufficient and a cluster is not necessary

• 2 CPUs or more

• 4GB+ free memory, depends on algorithm and simulation setting

• 10GB+ free disk space

• Internet connection for GitHub and pip, etc

• Python 3.6+ installed

In this example, we are using the Linux platform with Python 3.6.9. If you are using Windows, most steps should still
apply but a few commands and package requirements might be different.

2.1 Step 1. Ianvs Preparation

First, we download the code of Ianvs. Assuming that we are using /ianvs as workspace, Ianvs can be cloned with Git
as:

mkdir /ianvs
cd /ianvs #One might use another path preferred

mkdir project
cd project
git clone https://github.com/kubeedge/ianvs.git

Then, we install third-party dependencies for ianvs.

sudo apt-get update
sudo apt-get install libgl1-mesa-glx -y
python -m pip install --upgrade pip

cd ianvs
python -m pip install ./examples/resources/third_party/*
python -m pip install -r requirements.txt

7

Ianvs, Release v0.1

We are now ready to install Ianvs.

python setup.py install

Note: If you want to use a separate space to do work, you may select the following method:

python -m pip install --pre envd
envd bootstrap

cd /ianvs/project/ianvs
envd build build.envd
envd up

refer to the ML tool envd.

2.2 Step 2. Dataset and Model Preparation

Datasets and models can be large. To avoid over-size projects in the GitHub repository of Ianvs, the Ianvs code base
does not include origin datasets and models. Then developers do not need to download non-necessary datasets and
models for a quick start.

First, the user needs to prepare the dataset according to the targeted scenario, from source links (e.g., from Cloud
Service or Kaggle) provided by Ianvs. All scenarios with datasets are available Links of scenarios. As an example in
this document, we are using the PCB-AoI Public Dataset put on Kaggle. The dataset is released by KubeEdge Ianvs
and prepared by KubeEdge SIG AI members. See Details of PCB-AoI dataset for more information.

cd /ianvs #One might use another path preferred
mkdir dataset
cd dataset
wget https://kubeedge.obs.cn-north-1.myhuaweicloud.com:443/ianvs/pcb-aoi/dataset.zip
unzip dataset.zip

The URL address of this dataset then should be filled in the configuration file testenv.yaml. In this quick start, we
have done that for you and the interested readers can refer to testenv.yaml for more details.

Then we may Develop the targeted algorithm as usual. In this quick start, Ianvs has prepared an initial model for
benchmarking. One can find the model at FPN-model.

cd /ianvs #One might use another path preferred
mkdir initial_model
cd initial_model
wget https://kubeedge.obs.cn-north-1.myhuaweicloud.com:443/ianvs/pcb-aoi/model.zip

Related algorithm is also ready as a wheel in this quick start.

cd /ianvs/project/ianvs/
python -m pip install examples/resources/algorithms/FPN_TensorFlow-0.1-py3-none-any.whl

The URL address of this algorithm then should be filled in the configuration file algorithm.yaml. In this quick start,
we have done that for you and the interested readers can refer to the algorithm.yaml for more details.

8 Chapter 2. Quick Start

https://envd.tensorchord.ai/guide/getting-started.html
../proposals/scenarios/industrial-defect-detection/pcb-aoi.html
https://www.kaggle.com/datasets/kubeedgeianvs/pcb-aoi
../proposals/scenarios/industrial-defect-detection/pcb-aoi.html
https://ianvs.readthedocs.io/en/latest/guides/how-to-test-algorithms.html#step-1-test-environment-preparation
https://kubeedge.obs.cn-north-1.myhuaweicloud.com:443/ianvs/pcb-aoi/model.zip
https://ianvs.readthedocs.io/en/latest/guides/how-to-test-algorithms.html#step-1-test-environment-preparation

Ianvs, Release v0.1

2.3 Step 3. Ianvs Execution and Presentation

We are now ready to run the ianvs for benchmarking on the PCB-AoI dataset.

ianvs -f ./examples/pcb-aoi/singletask_learning_bench/benchmarkingjob.yaml

Finally, the user can check the result of benchmarking on the console and also in the output path(e.g. /ianvs/
singletask_learning_bench/workspace) defined in the benchmarking config file (e.g. benchmarkingjob.
yaml). In this quick start, we have done all configurations for you and the interested readers can refer to benchmark-
ingJob.yaml for more details.

The final output might look like this:

rank algo-
rithm

f1_scoreparadigmbase-
model

learn-
ing_rate

mo-
men-
tum

time url

1 fpn_singletask_learning0.8396sin-
gle-
tasklearn-
ing

FPN 0.1 0.5 2022-
07-07
20:33:53

/ianvs/pcb-aoi/singletask_learning_bench/workspace/benchmarkingjob/fpn_singletask_learning/49eb5ffd-
fdf0-11ec-8d5d-fa163eaa99d5

2 fpn_singletask_learning0.8353sin-
gle-
tasklearn-
ing

FPN 0.1 0.95 2022-
07-07
20:31:08

/ianvs/pcb-aoi/singletask_learning_bench/workspace/benchmarkingjob/fpn_singletask_learning/49eb5ffc-
fdf0-11ec-8d5d-fa163eaa99d5

This ends the quick start experiment.

2.3. Step 3. Ianvs Execution and Presentation 9

https://ianvs.readthedocs.io/en/latest/guides/how-to-test-algorithms.html#step-1-test-environment-preparation
https://ianvs.readthedocs.io/en/latest/guides/how-to-test-algorithms.html#step-1-test-environment-preparation

Ianvs, Release v0.1

10 Chapter 2. Quick Start

CHAPTER

THREE

WHAT IS NEXT

If the reader is ready to explore more on Ianvs, e.g., after the quick start, the following links might help:

How to test algorithms

How to contribute algorithms

How to contribute test environments

Links of scenarios

Details of PCB-AoI dataset

If any problems happen, the user can refer to the issue page on Github for help and are also welcome to raise any new
issue.

Enjoy your journey on Ianvs!

11

how-to-test-algorithms.html
how-to-contribute-algorithms.html
how-to-contribute-test-environments.html
../proposals/scenarios/industrial-defect-detection/pcb-aoi.html
../proposals/scenarios/industrial-defect-detection/pcb-aoi.html
https://github.com/kubeedge/ianvs/issues

Ianvs, Release v0.1

12 Chapter 3. What is next

CHAPTER

FOUR

HOW TO INSTALL IANVS

It is recommended to use Ianvs on a Linux machine. But for quick algorithm development, the Windows platform is
also planned to support, to reduce the configuration cost of the development environment.

This guide covers how to install Ianvs on a Linux environment.

4.1 Prerequisites

• One machine is all you need, i.e., a laptop or a virtual machine is sufficient and a cluster is not necessary

• 2 CPUs or more

• 4GB+ free memory, depends on algorithm and simulation setting

• 10GB+ free disk space

• Internet connection for GitHub and pip, etc

• Python 3.6+ installed

you can check the python version by the following command:

python -V

after doing that, the output will be like this, which means your version fits the bill.

Python 3.6.9

4.2 Install ianvs on Linux

4.2.1 Create virtualenv

sudo apt-get install -y virtualenv
mkdir ~/venv
virtualenv -p python3 ~/venv/ianvs
source ~/venv/ianvs/bin/activate

If you prefer conda, you can create a python environment by referring to the creating steps provided by
conda.

13

https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#creating-an-environment-with-commands

Ianvs, Release v0.1

4.2.2 Download ianvs project

cd ~
git clone https://github.com/kubeedge/ianvs.git

4.2.3 Install third-party dependencies

sudo apt-get update
sudo apt-get install libgl1-mesa-glx -y
python -m pip install --upgrade pip

cd ~/ianvs
python -m pip install ./examples/resources/third_party/*
python -m pip install -r requirements.txt

4.2.4 Install ianvs

python setup.py install

4.2.5 Check the installation

ianvs -v

If the version information is printed, Ianvs is installed successfully.

4.3 About Windows

At the time being, the package requirements of Ianvs are only applicable for Linux, to ensure comprehensive support
from the Linux ecosystem and to ease the burden of manual installation for users in Windows.

If you are more used to developing on Windows, you can still do so with remote connections like SSH from Windows
connecting to a Linux machine with ianvs installed. Such remote connection is already supported in common Python
coding tools like VScode, Pycharm, etc. By doing so, it helps to provide efficient installation and robust functionality
of Ianvs.

14 Chapter 4. How to install Ianvs

CHAPTER

FIVE

HOW TO TEST ALGORITHMS WITH IANVS

With Ianvs installed and the related environment prepared, an algorithm developer is then able to test his/her own
targeted algorithm using the following steps.

Note that:

• If you are testing an algorithm submitted in the Ianvs repository, e.g., FPN for single task learning, the test
environment and the test case are both ready to use and you can directly refer to Quick Start.

• Otherwise, if the user has a test algorithm that is new to the Ianvs repository, i.e., the test environment and the
test case are not ready for the targeted algorithm, you might test the algorithm in Ianvs following the next steps
from scratch

5.1 Step 1. Test Environment Preparation

First, the user needs to prepare the dataset according to the targeted scenario, from source links (e.g., from Kaggle)
provided by Ianvs. Scenarios with datasets are available Links of scenarios. As an example in this document, we are
using the PCB-AoI Public Dataset released by KubeEdge SIG AI members on Kaggle. See details of PCB-AoI dataset
for more information on this dataset.

You might wonder why not put the dataset on the GitHub repository of Ianvs: Datasets can be large. To avoid over-size
projects in the GitHub repository of Ianvs, the Ianvs code base does not include origin datasets and developers might
want to download unneeded datasets. The URL address of this dataset then should be filled in the configuration file
testenv.yaml.

The URL address of this dataset then should be filled in the configuration file testenv.yaml.

testenv.yaml
testenv:
dataset configuration
dataset:
the url address of train dataset index; string type;
train_url: "/ianvs/dataset/train_data/index.txt"
the url address of test dataset index; string type;
test_url: "/ianvs/dataset/test_data/index.txt"

model eval configuration of incremental learning;
model_eval:
metric used for model evaluation
model_metric:
metric name; string type;
name: "f1_score"

(continues on next page)

15

Ianvs, Release v0.1

(continued from previous page)

the url address of python file
url: "./examples/pcb-aoi/incremental_learning_bench/testenv/f1_score.py"

condition of triggering inference model to update
threshold of the condition; types are float/int
threshold: 0.01
operator of the condition; string type;
values are ">=", ">", "<=", "<" and "=";
operator: ">="

metrics configuration for test case's evaluation; list type;
metrics:

metric name; string type;
- name: "f1_score"
the url address of python file
url: "./examples/pcb-aoi/incremental_learning_bench/testenv/f1_score.py"

- name: "samples_transfer_ratio"

incremental rounds setting for incremental learning paradigm.; int type; default␣
→˓value is 2;
incremental_rounds: 2

The URL address of this test environment, i.e., testenv.yaml, then should be filled in the configuration file in the
following Step 3. For example,

benchmarkingJob.yaml
testenv: "./examples/pcb-aoi/benchmarkingjob/testenv/testenv.yaml"

5.2 Step 2. Test Case Preparation

Note that the tested algorithm should follow the ianvs interface to ensure functional benchmarking. That is, when
a new algorithm is needed for testing, it should be extended based on the basic classes, i.e., class_factory.py. The
class factory helps to make the algorithm pluggable in Ianvs and two classes are defined in class_factory.py, namely
ClassType, and ClassFactory. ClassFactory can register the modules you want to reuse through decorators. The user
may develop the targeted algorithm, as usual, using the algorithm interface in the class factory. Currently, Ianvs is
using the class_factory.py defined in KubeEdge SIG AI (source link). If you want to contribute a new type of module
to KubeEdge SIG AI, i.e., a new class type, please refer to the guide on how to contribute algorithms.

Currently, Ianvs is using the class_factory.py defined in KubeEdge SIG AI (source link). If you want to contribute
a new type of modules to KubeEdge SIG AI, i.e., a new classtype, please refer to the guide of how to contribute
algorithms.

16 Chapter 5. How to test algorithms with Ianvs

https://github.com/kubeedge/sedna/blob/main/lib/sedna/common/class_factory.py
how-to-contribute-algorithms.html
how-to-contribute-algorithms.html

Ianvs, Release v0.1

5.2.1 Example 1. Testing a hard-example-mining algorithm in incremental learning

As the first example, we describe how to test an algorithm Threshold-based-HEM for HEM (Hard Example Mining)
module in incremental learning. For this new algorithm in ClassType.HEM, the code in the algorithm file is as follows:

@ClassFactory.register(ClassType.HEM, alias="Threshold-based-HEM")
class ThresholdFilter(BaseFilter, abc.ABC):

def __init__(self, threshold=0.5, **kwargs):
self.threshold = float(threshold)

def __call__(self, infer_result=None):
return Threshold-based-HEM(infer_result)

With the above algorithm interface, one may develop the targeted algorithm as usual in the same algorithm file:

def Threshold-based-HEM(infer_result=None):
if invalid input, return False
if not (infer_result

and all(map(lambda x: len(x) > 4, infer_result))):
return False

image_score = 0

for bbox in infer_result:
image_score += bbox[4]

average_score = image_score / (len(infer_result) or 1)
return average_score < self.threshold

5.2.2 Example 2. Testing a neural-network-based modeling algorithm in incremen-
tal learning

As the second example, we describe how to test a neural network FPN for HEM (Hard Example Mining) module in
incremental learning. For this new algorithm in ClassType.GENERAL, the code in the algorithm file is as follows:

@ClassFactory.register(ClassType.GENERAL, alias="FPN")
class BaseModel:

def __init__(self, **kwargs):
"""
initialize logging configuration
"""

self.has_fast_rcnn_predict = False

self._init_tf_graph()

self.temp_dir = tempfile.mkdtemp()
if not os.path.isdir(self.temp_dir):

mkdir(self.temp_dir)

os.environ["MODEL_NAME"] = "model.zip"
(continues on next page)

5.2. Step 2. Test Case Preparation 17

Ianvs, Release v0.1

(continued from previous page)

cfgs.LR = kwargs.get("learning_rate", 0.0001)
cfgs.MOMENTUM = kwargs.get("momentum", 0.9)
cfgs.MAX_ITERATION = kwargs.get("max_iteration", 5)

def train(self, train_data, valid_data=None, **kwargs):

if train_data is None or train_data.x is None or train_data.y is None:
raise Exception("Train data is None.")

with tf.Graph().as_default():

img_name_batch, train_data, gtboxes_and_label_batch, num_objects_batch, data_
→˓num = \

next_batch_for_tasks(
(train_data.x, train_data.y),
dataset_name=cfgs.DATASET_NAME,
batch_size=cfgs.BATCH_SIZE,
shortside_len=cfgs.SHORT_SIDE_LEN,
is_training=True,
save_name="train"

)

... ...
several lines are omitted here.

return self.checkpoint_path

def save(self, model_path):
if not model_path:

raise Exception("model path is None.")

model_dir, model_name = os.path.split(self.checkpoint_path)
models = [model for model in os.listdir(model_dir) if model_name in model]

if os.path.splitext(model_path)[-1] != ".zip":
model_path = os.path.join(model_path, "model.zip")

if not os.path.isdir(os.path.dirname(model_path)):
os.makedirs(os.path.dirname(model_path))

with zipfile.ZipFile(model_path, "w") as f:
for model_file in models:

model_file_path = os.path.join(model_dir, model_file)
f.write(model_file_path, model_file, compress_type=zipfile.ZIP_DEFLATED)

return model_path

def predict(self, data, input_shape=None, **kwargs):
if data is None:

raise Exception("Predict data is None")

inference_output_dir = os.getenv("RESULT_SAVED_URL")

(continues on next page)

18 Chapter 5. How to test algorithms with Ianvs

Ianvs, Release v0.1

(continued from previous page)

with self.tf_graph.as_default():
if not self.has_fast_rcnn_predict:

self._fast_rcnn_predict()
self.has_fast_rcnn_predict = True

restorer = self._get_restorer()

config = tf.ConfigProto()
init_op = tf.group(

tf.global_variables_initializer(),
tf.local_variables_initializer()

)

with tf.Session(config=config) as sess:
sess.run(init_op)

... ...
several lines are omitted here.

return predict_dict

def load(self, model_url=None):
if model_url:

model_dir = os.path.split(model_url)[0]
with zipfile.ZipFile(model_url, "r") as f:

f.extractall(path=model_dir)
ckpt_name = os.path.basename(f.namelist()[0])
index = ckpt_name.find("ckpt")
ckpt_name = ckpt_name[:index + 4]

self.checkpoint_path = os.path.join(model_dir, ckpt_name)

else:
raise Exception(f"model url is None")

return self.checkpoint_path

def evaluate(self, data, model_path, **kwargs):
if data is None or data.x is None or data.y is None:

raise Exception("Prediction data is None")

self.load(model_path)
predict_dict = self.predict(data.x)
metric_name, metric_func = kwargs.get("metric")
if callable(metric_func):

return {"f1_score": metric_func(data.y, predict_dict)}
else:

raise Exception(f"not found model metric func(name={metric_name}) in model␣
→˓eval phase")

With the above algorithm interface, one may develop the targeted algorithm of FPN as usual in the same algorithm file.
The FPN_TensorFlow is also open sourced. For those interested in FPN_TensorFlow, an example implementation is
available here and extended with the algorithm interface here.

5.2. Step 2. Test Case Preparation 19

https://github.com/DetectionTeamUCAS/FPN_Tensorflow
https://github.com/ECIL-EdgeAI/FPN_Tensorflow

Ianvs, Release v0.1

Then we can fill in the algorithm.yaml:

algorithm:
paradigm type; string type;
currently the options of value are as follows:
1> "singletasklearning"
2> "incrementallearning"
paradigm_type: "incrementallearning"
incremental_learning_data_setting:
ratio of training dataset; float type;
the default value is 0.8.
train_ratio: 0.8
the method of splitting dataset; string type; optional;
currently the options of value are as follows:
1> "default": the dataset is evenly divided based train_ratio;
splitting_method: "default"

the url address of initial model for model pre-training; string url;
initial_model_url: "/ianvs/initial_model/model.zip"

algorithm module configuration in the paradigm; list type;
modules:
type of algorithm module; string type;
currently the options of value are as follows:
1> "basemodel": contains important interfaces such as train, eval, predict and␣

→˓more; required module;
- type: "basemodel"
name of python module; string type;
example: basemodel.py has BaseModel module that the alias is "FPN" for this␣

→˓benchmarking;
name: "FPN"
the url address of python module; string type;
url: "./examples/pcb-aoi/incremental_learning_bench/testalgorithms/fpn/basemodel.py

→˓"

hyperparameters configuration for the python module; list type;
hyperparameters:
name of the hyperparameter; string type;
- momentum:

values of the hyperparameter; list type;
types of the value are string/int/float/boolean/list/dictionary
values:
- 0.95
- 0.5

- learning_rate:
values:
- 0.1

2> "hard_example_mining": check hard example when predict ; optional module;
- type: "hard_example_mining"
name of python module; string type;
name: "IBT"
the url address of python module; string type;
url: "./examples/pcb-aoi/incremental_learning_bench/testalgorithms/fpn/hard_

→˓example_mining.py"
(continues on next page)

20 Chapter 5. How to test algorithms with Ianvs

Ianvs, Release v0.1

(continued from previous page)

hyperparameters configuration for the python module; list type;
hyperparameters:
name of the hyperparameter; string type;
threshold of image; value is [0, 1]
- threshold_img:

values:
- 0.9

predict box of image; value is [0, 1]
- threshold_box:

values:
- 0.9

The URL address of this algorithm then should be filled in the configuration file of benchmarkingJob.yaml in the
following Step 3. Two examples are as follows:

the configuration of test object
test_object:
test type; string type;
currently the option of value is "algorithms",the others will be added in succession.
type: "algorithms"
test algorithm configuration files; list type;
algorithms:
algorithm name; string type;
- name: "fpn_incremental_learning"
the url address of test algorithm configuration file; string type;
the file format supports yaml/yml
url: "./examples/pcb-aoi/incremental_learning_bench/testalgorithms/fpn/fpn_

→˓algorithm.yaml"

or

the configuration of test object
test_object:
test type; string type;
currently the option of value is "algorithms",the others will be added in succession.
type: "algorithms"
test algorithm configuration files; list type;
algorithms:
algorithm name; string type;
- name: "fpn_singletask_learning"
the url address of test algorithm configuration file; string type;
the file format supports yaml/yml;
url: "./examples/pcb-aoi/singletask_learning_bench/testalgorithms/fpn/fpn_

→˓algorithm.yaml"

5.2. Step 2. Test Case Preparation 21

Ianvs, Release v0.1

5.3 Step 3. ianvs Configuration

Now we come to the final configuration on benchmarkingJob.yaml before running ianvs.

First, the user can configure the workspace to reserve the output of tests.

benchmarkingJob.yaml
workspace: "/ianvs/pcb-aoi/workspace/"

Then, the user fill in the test environment and algorithm configured in previous steps.

benchmarkingJob.yaml
testenv: ".examples/pcb-aoi/benchmarkingjob/testenv/testenv.yaml"

algorithms:
- name: "fpn_incremental_learning"
url: "./examples/pcb-aoi/benchmarkingjob/testalgorithms/fpn_incremental_learning/fpn_

→˓algorithm.yaml"

As the final leaderboard, the user can configure how to rank the leaderboard with the specific metric and order.

benchmarkingJob.yaml
rank:

sort_by: [{ "f1_score": "descend" }]

There are quite a few possible data items in the leaderboard. Not all of them can be shown simultaneously on the screen.
In the leaderboard, we provide the selected_only mode for the user to configure what is shown or is not shown. The
user can add his/her interested data items in terms of paradigms, modules, hyperparameters, and metrics so that
the selected columns will be shown.

visualization:
mode: "selected_only"
method: "print_table"

selected_dataitem:
paradigms: ["all"]
modules: ["all"]
hyperparameters: ["all"]
metrics: ["f1_score"]

save_mode: "selected_and_all"

5.4 Step 4. Execution and Presentation

Finally, the user can run ianvs for benchmarking.

The benchmarking result of the targeted algorithms will be shown after the evaluation is done. Leaderboard examples
can be found here.

22 Chapter 5. How to test algorithms with Ianvs

https://github.com/kubeedge/ianvs/tree/main/docs/proposals/leaderboards

CHAPTER

SIX

INDUSTRIAL DEFECT DETECTION: THE PCB-AOI DATASET

Download link: Kaggle, Huawei OBS

6.1 Authors

• China Telcom Research Institute: Dongdong Li, Dan Liu, Yun Shen, Yaqi Song

• Raisecom Technology Co.,ltd.: Liangliang Luo

6.2 Background

Surface-mount technology (SMT) is a technology that automates electronic circuits production in which components
are mounted or placed onto the surface of printed circuit boards. Solder paste printing (SPP) is the most delicate stage in
SMT. It prints solder paste on the pads of an electronic circuit panel. Thus, SPP is followed by a solder paste inspection
(SPI) stage to detect defects. SPI scans the printed circuit board for missing/less paste, bridging between pads, miss
alignments, and so forth. Boards with anomaly must be detected, and boards in good condition should not be disposed
of. Thus SPI requires high precision and a high recall.

The PCB-AoI dataset is a part of the open-source distributed synergy AI benchmarking project KubeEdge-Ianvs. Ianvs
is honored to be the First site that this dataset is released and the Ianvs working group put it on Kaggle as The PCB-AoI
public dataset. It is released by KubeEdge SIG AI members from China Telecom and Raisecom Technology.

Below shows two example figures in the dataset.

23

https://www.kaggle.com/datasets/kubeedgeianvs/pcb-aoi
https://kubeedge.obs.cn-north-1.myhuaweicloud.com:443/ianvs/pcb-aoi/dataset.zip
https://www.kaggle.com/datasets/kubeedgeianvs/pcb-aoi
https://www.kaggle.com/datasets/kubeedgeianvs/pcb-aoi

Ianvs, Release v0.1

6.3 Data Explorer

In this dataset, more than 230 boards are collected and the number of images is enhanced to more than 1200. Detailedly,
the dataset include two parts, i.e., the train and the test set. The train set includes 173 boards while the test set includes
60 boards. That is, the train-test ratio is around 3:1 in terms of PCB boards. Data augmentation is conducted, boosting
the train-test ratio to 1211:60 (about 20:1) in term of images. Both directories of train_data and test_data include the
index file which recodes the mapping between the raw images and the label of annotation.

The directories of this dataset is as follows:

PCB-AoI Dataset
train_data

Annotation
JPEGImages
index.txt

test_data
Annotation
JPEGImages
index.txt

train_data_augmentation
Annotation
JPEGImages
index.txt

The following is part of index.txt:

./JPEGImages/20161019-SPI-AOI-1.jpeg ./Annotations/20161019-SPI-AOI-1.xml

./JPEGImages/20161020-SPI-AOI-5.jpeg ./Annotations/20161020-SPI-AOI-5.xml

./JPEGImages/20161021-SPI-AOI-13.jpeg ./Annotations/20161021-SPI-AOI-13.xml
(continues on next page)

24 Chapter 6. Industrial defect detection: the PCB-AoI dataset

images/PCB-AoI_example.png

Ianvs, Release v0.1

(continued from previous page)

./JPEGImages/20161021-SPI-AOI-14.jpeg ./Annotations/20161021-SPI-AOI-14.xml

./JPEGImages/20161021-SPI-AOI-15.jpeg ./Annotations/20161021-SPI-AOI-15.xml

Column 1 stands for the file path of the raw image, and column 2 is the file path of corresponding annotation file.In
this dataset, the xml annotation follows Pascal VOC XML format. you can find more description of Pascal VOC XML
at here.

6.3. Data Explorer 25

https://roboflow.com/formats/pascal-voc-xml

Ianvs, Release v0.1

26 Chapter 6. Industrial defect detection: the PCB-AoI dataset

CHAPTER

SEVEN

SINGLE TASK LEARNING: FPN

Pre-trained model: Huawei OBS

Single task learning is a traditional learning pooling all data together to train a single model. It typically includes a
specialist model laser-focused on a single task and requires large amounts of task-specific labeled data, which is not
always available on early stage of a distributed synergy AI project.

As shown in the following figure, the single task learning works as procedures below:

1. Developer implements and deploys the application based on single task learning.

2. The application runs and launches single task learning.

3. The application uploads samples to the cloud.

4. Labeling service labels the uploaded samples.

5. Training learns the samples to generate a new model.

6. The system updates the model on the edge.

7. The model conducts inference given test samples where the inference result is send to the application which ends
the process.

As for the base model of single task learning, in this report we are using FPN_TensorFlow. It is a tensorflow re-
implementation of Feature Pyramid Networks for Object Detection, which is based on Faster-RCNN. More detailedly,
feature pyramids are a basic component in recognition systems for detecting objects at different scales. But recent
deep learning object detectors have avoided pyramid representations, in part because they are compute and memory
intensive. Researchers have exploited the inherent multi-scale, pyramidal hierarchy of deep convolutional networks to

27

https://kubeedge.obs.cn-north-1.myhuaweicloud.com:443/ianvs/pcb-aoi/model.zip
single_task_learning.png

Ianvs, Release v0.1

construct feature pyramids with marginal extra cost. A top-down architecture with lateral connections is developed for
building high-level semantic feature maps at all scales. The architecture, called a Feature Pyramid Network (FPN),
shows significant improvement as a generic feature extractor in several applications. Using FPN in a basic Faster R-
CNN system, the method achieves state-of-the-art single-model results on the COCO detection benchmark without
bells and whistles, surpassing all existing single-task entries including those from the COCO 2016 challenge winners.
In addition, FPN can run at 5 FPS on a GPU and thus is a practical and accurate solution to multi-scale object detection.

The FPN_TensorFlow is also open sourced and completed by YangXue and YangJirui. For those interested in details
of FPN_TensorFlow, an example implementation is available here and is extended with the Ianvs algorithm inferface
here.

7.1 Implementation

Here we also show how to implement a single task learning algorithm for testing in ianvs, based on an opensource
algorithm FPN.

When testing your own algorithm, of course, FPN is not necessary. It can be replaced with any algorithm complying
the requirement of ianvs interface.

Ianvs testing algorithm development, at present, are using Sedna Lib. The following is recommended development
workflow:

1. Algorithm Development: put the algorithm implementation to ianvs examples directory locally, for testing.

2. Algorithm Submission: submit the algorithm implementation to Sedna repository, for sharing, then everyone
can test and use your algorithm.

7.2 Customize algorithm

Sedna provides a class called class_factory.py in common package, in which only a few lines of changes are required
to become a module of sedna.

Two classes are defined in class_factory.py, namely ClassType and ClassFactory.

ClassFactory can register the modules you want to reuse through decorators. For example, in the following code
example, you have customized an single task learning algorithm, you only need to add a line of ClassFactory.
register(ClassType.GENERAL) to complete the registration.

The following code is just to show the overall structure of a basicIL-fpn BaseModel, not the complete version. The
complete code can be found here.

@ClassFactory.register(ClassType.GENERAL, alias="FPN")
class BaseModel:

def __init__(self, **kwargs):
"""
initialize logging configuration
"""

self.has_fast_rcnn_predict = False

self._init_tf_graph()

self.temp_dir = tempfile.mkdtemp()
(continues on next page)

28 Chapter 7. Single task learning: FPN

https://github.com/DetectionTeamUCAS/FPN_Tensorflow
https://github.com/ECIL-EdgeAI/FPN_Tensorflow
https://github.com/DetectionTeamUCAS/FPN_Tensorflow
https://github.com/kubeedge/sedna
https://github.com/kubeedge/ianvs/tree/main/examples/pcb-aoi/incremental_learning_bench/testalgorithms/fpn

Ianvs, Release v0.1

(continued from previous page)

if not os.path.isdir(self.temp_dir):
mkdir(self.temp_dir)

os.environ["MODEL_NAME"] = "model.zip"
cfgs.LR = kwargs.get("learning_rate", 0.0001)
cfgs.MOMENTUM = kwargs.get("momentum", 0.9)
cfgs.MAX_ITERATION = kwargs.get("max_iteration", 5)

def train(self, train_data, valid_data=None, **kwargs):

if train_data is None or train_data.x is None or train_data.y is None:
raise Exception("Train data is None.")

with tf.Graph().as_default():

img_name_batch, train_data, gtboxes_and_label_batch, num_objects_batch, data_
→˓num = \

next_batch_for_tasks(
(train_data.x, train_data.y),
dataset_name=cfgs.DATASET_NAME,
batch_size=cfgs.BATCH_SIZE,
shortside_len=cfgs.SHORT_SIDE_LEN,
is_training=True,
save_name="train"

)

... ...
several lines are omitted here.

return self.checkpoint_path

def save(self, model_path):
if not model_path:

raise Exception("model path is None.")

model_dir, model_name = os.path.split(self.checkpoint_path)
models = [model for model in os.listdir(model_dir) if model_name in model]

if os.path.splitext(model_path)[-1] != ".zip":
model_path = os.path.join(model_path, "model.zip")

if not os.path.isdir(os.path.dirname(model_path)):
os.makedirs(os.path.dirname(model_path))

with zipfile.ZipFile(model_path, "w") as f:
for model_file in models:

model_file_path = os.path.join(model_dir, model_file)
f.write(model_file_path, model_file, compress_type=zipfile.ZIP_DEFLATED)

return model_path

def predict(self, data, input_shape=None, **kwargs):

(continues on next page)

7.2. Customize algorithm 29

Ianvs, Release v0.1

(continued from previous page)

if data is None:
raise Exception("Predict data is None")

inference_output_dir = os.getenv("RESULT_SAVED_URL")

with self.tf_graph.as_default():
if not self.has_fast_rcnn_predict:

self._fast_rcnn_predict()
self.has_fast_rcnn_predict = True

restorer = self._get_restorer()

config = tf.ConfigProto()
init_op = tf.group(

tf.global_variables_initializer(),
tf.local_variables_initializer()

)

with tf.Session(config=config) as sess:
sess.run(init_op)

... ...
several lines are omitted here.

return predict_dict

def load(self, model_url=None):
if model_url:

model_dir = os.path.split(model_url)[0]
with zipfile.ZipFile(model_url, "r") as f:

f.extractall(path=model_dir)
ckpt_name = os.path.basename(f.namelist()[0])
index = ckpt_name.find("ckpt")
ckpt_name = ckpt_name[:index + 4]

self.checkpoint_path = os.path.join(model_dir, ckpt_name)

else:
raise Exception(f"model url is None")

return self.checkpoint_path

def evaluate(self, data, model_path, **kwargs):
if data is None or data.x is None or data.y is None:

raise Exception("Prediction data is None")

self.load(model_path)
predict_dict = self.predict(data.x)
metric_name, metric_func = kwargs.get("metric")
if callable(metric_func):

return {"f1_score": metric_func(data.y, predict_dict)}
else:

raise Exception(f"not found model metric func(name={metric_name}) in model␣

(continues on next page)

30 Chapter 7. Single task learning: FPN

Ianvs, Release v0.1

(continued from previous page)

→˓eval phase")

After registration, you only need to change the name of the STL and parameters in the yaml file, and then the corre-
sponding class will be automatically called according to the name.

7.2. Customize algorithm 31

Ianvs, Release v0.1

32 Chapter 7. Single task learning: FPN

CHAPTER

EIGHT

INCREMENTAL LEARNING: BASICIL-FPN

Initial model: Huawei OBS

Traditionally, the data is collected manually and periodically retrained on the cloud to improve the model effect. How-
ever, data is continuously generated on the edge side. Traditional method wastes a lot of human resources, and the
model update frequency is slow.

Incremental learning allows users to continuously monitor the newly generated data and by configuring some triggering
rules to determine whether to start training, evaluation, and deployment automatically, and continuously improve the
model performance.

Its goals include:

• Automatically retrains, evaluates, and updates models based on the data generated at the edge.

• Support time trigger, sample size trigger, and precision-based trigger.

• Support manual triggering of training, evaluation, and model update.

• Support hard example discovering of unlabeled data, for reducing the manual labeling workload.

As shown in the above figure, the incremental learning works as following procedures:

1. Developer implements and deploys the application based on incremental learning.

33

https://kubeedge.obs.cn-north-1.myhuaweicloud.com:443/ianvs/pcb-aoi/model.zip
incremental_learning.png

Ianvs, Release v0.1

2. The application runs and launches incremental learning. It can also return the inference result to the application.

3. The system detects hard examples and uploads hard examples to the cloud.

4. Labeling service labels the hard examples.

5. Incremental training online learns the hard examples to generate a new model.

6. Model evaluation is conducted and updates the model if qualified.

7. The model outputs the inference result given test samples and continue as Step 3.

8.1 Implementation

Here we will show how to implement a single task learning algorithm for testing in ianvs, based on an opensource
algorithm FPN.

For test of your own algorithm, the base model of FPN is not necessary: It can be replaced with any algorithm complying
the requirement of ianvs interface.

Ianvs testing algorithm development, at present, are using Sedna Lib. The following is recommended development
workflow:

1. Algorithm Development: put the algorithm implementation to ianvs examples directory locally, for testing.

2. Algorithm Submission: submit the algorithm implementation to Sedna repository, for sharing, then everyone
can test and use your algorithm.

Sedna provides a class called class_factory.py in common package, in which only a few lines of changes are required
to become a module of sedna.

Two classes are defined in class_factory.py, namely ClassType and ClassFactory.

ClassFactory can register the modules you want to reuse through decorators. For example, in the following code
example, you have customized an single task learning algorithm, you only need to add a line of ClassFactory.
register(ClassType.GENERAL) to complete the registration.

The following code is just to show the overall structure of a basicIL-fpn BaseModel, not the complete version. The
complete code can be found here.

@ClassFactory.register(ClassType.GENERAL, alias="FPN")
class BaseModel:

def __init__(self, **kwargs):
"""
initialize logging configuration
"""

self.has_fast_rcnn_predict = False

self._init_tf_graph()

self.temp_dir = tempfile.mkdtemp()
if not os.path.isdir(self.temp_dir):

mkdir(self.temp_dir)

os.environ["MODEL_NAME"] = "model.zip"
cfgs.LR = kwargs.get("learning_rate", 0.0001)

(continues on next page)

34 Chapter 8. Incremental learning: BasicIL-FPN

https://github.com/DetectionTeamUCAS/FPN_Tensorflow
https://github.com/kubeedge/sedna
https://github.com/kubeedge/ianvs/tree/main/examples/pcb-aoi/incremental_learning_bench/testalgorithms/fpn

Ianvs, Release v0.1

(continued from previous page)

cfgs.MOMENTUM = kwargs.get("momentum", 0.9)
cfgs.MAX_ITERATION = kwargs.get("max_iteration", 5)

def train(self, train_data, valid_data=None, **kwargs):

if train_data is None or train_data.x is None or train_data.y is None:
raise Exception("Train data is None.")

with tf.Graph().as_default():

img_name_batch, train_data, gtboxes_and_label_batch, num_objects_batch, data_
→˓num = \

next_batch_for_tasks(
(train_data.x, train_data.y),
dataset_name=cfgs.DATASET_NAME,
batch_size=cfgs.BATCH_SIZE,
shortside_len=cfgs.SHORT_SIDE_LEN,
is_training=True,
save_name="train"

)

... ...
several lines are omitted here.

return self.checkpoint_path

def save(self, model_path):
if not model_path:

raise Exception("model path is None.")

model_dir, model_name = os.path.split(self.checkpoint_path)
models = [model for model in os.listdir(model_dir) if model_name in model]

if os.path.splitext(model_path)[-1] != ".zip":
model_path = os.path.join(model_path, "model.zip")

if not os.path.isdir(os.path.dirname(model_path)):
os.makedirs(os.path.dirname(model_path))

with zipfile.ZipFile(model_path, "w") as f:
for model_file in models:

model_file_path = os.path.join(model_dir, model_file)
f.write(model_file_path, model_file, compress_type=zipfile.ZIP_DEFLATED)

return model_path

def predict(self, data, input_shape=None, **kwargs):
if data is None:

raise Exception("Predict data is None")

inference_output_dir = os.getenv("RESULT_SAVED_URL")

(continues on next page)

8.1. Implementation 35

Ianvs, Release v0.1

(continued from previous page)

with self.tf_graph.as_default():
if not self.has_fast_rcnn_predict:

self._fast_rcnn_predict()
self.has_fast_rcnn_predict = True

restorer = self._get_restorer()

config = tf.ConfigProto()
init_op = tf.group(

tf.global_variables_initializer(),
tf.local_variables_initializer()

)

with tf.Session(config=config) as sess:
sess.run(init_op)

... ...
several lines are omitted here.

return predict_dict

def load(self, model_url=None):
if model_url:

model_dir = os.path.split(model_url)[0]
with zipfile.ZipFile(model_url, "r") as f:

f.extractall(path=model_dir)
ckpt_name = os.path.basename(f.namelist()[0])
index = ckpt_name.find("ckpt")
ckpt_name = ckpt_name[:index + 4]

self.checkpoint_path = os.path.join(model_dir, ckpt_name)

else:
raise Exception(f"model url is None")

return self.checkpoint_path

def evaluate(self, data, model_path, **kwargs):
if data is None or data.x is None or data.y is None:

raise Exception("Prediction data is None")

self.load(model_path)
predict_dict = self.predict(data.x)
metric_name, metric_func = kwargs.get("metric")
if callable(metric_func):

return {"f1_score": metric_func(data.y, predict_dict)}
else:

raise Exception(f"not found model metric func(name={metric_name}) in model␣
→˓eval phase")

After registration, you only need to change the name of the basicIL and parameters in the yaml file, and then the
corresponding class will be automatically called according to the name.

36 Chapter 8. Incremental learning: BasicIL-FPN

CHAPTER

NINE

HOW TO CONFIG ALGORITHM

The algorithm developer is able to test his/her own targeted algorithm and configs the algorithm using the following
configuration.

9.1 The configuration of algorithm

Property Re-
quired

Description

paradigm_type yes Paradigm name; Type: string; Value Constraint: Currently the options of value are
as follows: 1> singletasklearning 2> incrementallearning

incremen-
tal_learning_data_setting

no Data setting for incremental learning paradigm.the configuration of incremen-
tal_learning_data_setting

initial_model_url no The url address of initial model for model pre-training; Type: string
modules yes The algorithm modules for paradigm; Type: list; Value Constraint: the list of the

configuration of module

For example:

algorithm:
paradigm type; string type;
currently the options of value are as follows:
1> "singletasklearning"
2> "incrementallearning"
paradigm_type: "incrementallearning"
incremental_learning_data_setting:

...
the url address of initial model for model pre-training; string url;
initial_model_url: "/ianvs/initial_model/model.zip"

algorithm module configuration in the paradigm; list type;
modules:
...

37

https://github.com/kubeedge/ianvs/blob/main/docs/user_interface/how-to-config-algorithm.md#the-configuration-of-incremental_learning_data_setting
https://github.com/kubeedge/ianvs/blob/main/docs/user_interface/how-to-config-algorithm.md#the-configuration-of-incremental_learning_data_setting
https://github.com/kubeedge/ianvs/blob/main/docs/user_interface/how-to-config-algorithm.md#the-configuration-of-module
https://github.com/kubeedge/ianvs/blob/main/docs/user_interface/how-to-config-algorithm.md#the-configuration-of-module

Ianvs, Release v0.1

9.1.1 The configuration of incremental_learning_data_setting

Prop-
erty

Re-
quired

Description

train_ratio no Ratio of training dataset; Type: float; Default value: 0.8; Value Constraint: the value is greater
than 0 and less than 1.

split-
ting_method

no The method of splitting dataset; Type: string; Default value: default; Value Constraint: Cur-
rently the options of value are as follows: 1> default: the dataset is evenly divided based
train_ratio.

For example:

incremental_learning_data_setting:
ratio of training dataset; float type;
the default value is 0.8.
train_ratio: 0.8
the method of splitting dataset; string type; optional;
currently the options of value are as follows:
1> "default": the dataset is evenly divided based train_ratio;
splitting_method: "default"

9.1.2 The configuration of module

Prop-
erty

Re-
quired

Description

type yes Algorithm module type; Type: string; Value Constraint: Currently the options of value are as follows:
1> basemodel: the algorithm module contains important interfaces such as train, eval, predict and
more.it’s required module. 2> hard_example_mining: the module checks hard example when predict.
it’s optional module and often used for incremental learning paradigm.

name yes Algorithm module name; Type: string; Value Constraint: a python module name
url yes The url address of python module file; Type: string
hy-
per-
pa-
ram-
e-
ters

no the configuration of hyperparameters

For example:

algorithm module configuration in the paradigm; list type;
modules:
type of algorithm module; string type;
currently the options of value are as follows:
1> "basemodel": contains important interfaces such as train eval predict and more;␣

→˓required module;
- type: "basemodel"
name of python module; string type;
example: basemodel.py has BaseModel module that the alias is "FPN" for this␣

→˓benchmarking;
(continues on next page)

38 Chapter 9. How to config algorithm

https://github.com/kubeedge/ianvs/blob/main/docs/user_interface/how-to-config-algorithm.md#the-configuration-of-hyperparameters

Ianvs, Release v0.1

(continued from previous page)

name: "FPN"
the url address of python module; string type;
url: "./examples/pcb-aoi/incremental_learning_bench/testalgorithms/fpn/basemodel.py"

hyperparameters configuration for the python module; list type;
hyperparameters:

...
2> "hard_example_mining": check hard example when predict ; optional module;

- type: "hard_example_mining"
name of python module; string type;
name: "IBT"
the url address of python module; string type;
url: "./examples/pcb-aoi/incremental_learning_bench/testalgorithms/fpn/hard_example_

→˓mining.py"
hyperparameters configuration for the python module; list type;
hyperparameters:
...

9.1.3 The configuration of hyperparameters

The following is an example of hyperparameters configuration:

hyperparameters configuration for the python module; list type;
hyperparameters:
name of the hyperparameter; string type;
- momentum:
values of the hyperparameter; list type;
types of the value are string/int/float/boolean/list/dictionary
values:
- 0.95
- 0.5

- learning_rate:
values:

- 0.1
- 0.2

Ianvs will test for all the hyperparameter combination, that means it will run all the following 4 test:

Num learning_rate momentum
1 0.1 0.95
2 0.1 0.5
3 0.2 0.95
4 0.2 0.5

Currently, Ianvs is not restricted to validity of the hyperparameter combination. That might lead to some invalid
parameter combination, and it is controlled by the user himself. In the further version of Ianvs, it will support excluding
invalid parameter combinations to improve efficiency.

9.1. The configuration of algorithm 39

Ianvs, Release v0.1

9.2 Show example

fpn_algorithm.yaml
algorithm:
paradigm type; string type;
currently the options of value are as follows:
1> "singletasklearning"
2> "incrementallearning"
paradigm_type: "incrementallearning"
incremental_learning_data_setting:
ratio of training dataset; float type;
the default value is 0.8.
train_ratio: 0.8
the method of splitting dataset; string type; optional;
currently the options of value are as follows:
1> "default": the dataset is evenly divided based train_ratio;
splitting_method: "default"

the url address of initial model for model pre-training; string url;
initial_model_url: "/ianvs/initial_model/model.zip"

algorithm module configuration in the paradigm; list type;
modules:
type of algorithm module; string type;
currently the options of value are as follows:
1> "basemodel": contains important interfaces such as train eval predict and␣

→˓more; required module;
- type: "basemodel"
name of python module; string type;
example: basemodel.py has BaseModel module that the alias is "FPN" for this␣

→˓benchmarking;
name: "FPN"
the url address of python module; string type;
url: "./examples/pcb-aoi/incremental_learning_bench/testalgorithms/fpn/basemodel.py

→˓"

hyperparameters configuration for the python module; list type;
hyperparameters:
name of the hyperparameter; string type;
- momentum:

values of the hyperparameter; list type;
types of the value are string/int/float/boolean/list/dictionary
values:
- 0.95
- 0.5

- learning_rate:
values:
- 0.1

2> "hard_example_mining": check hard example when predict ; optional module;
- type: "hard_example_mining"
name of python module; string type;
name: "IBT"
the url address of python module; string type;

(continues on next page)

40 Chapter 9. How to config algorithm

Ianvs, Release v0.1

(continued from previous page)

url: "./examples/pcb-aoi/incremental_learning_bench/testalgorithms/fpn/hard_
→˓example_mining.py"

hyperparameters configuration for the python module; list type;
hyperparameters:
name of the hyperparameter; string type;
threshold of image; value is [0, 1]
- threshold_img:

values:
- 0.9

predict box of image; value is [0, 1]
- threshold_box:

values:
- 0.9

9.2. Show example 41

Ianvs, Release v0.1

42 Chapter 9. How to config algorithm

CHAPTER

TEN

HOW TO CONFIG TESTENV

The algorithm developer is able to test his/her own targeted algorithm, he/she should prepare the test environment. how
to config test environment, please to refer to the following configuration information.

10.1 The configuration of testenv

Property Re-
quired

Description

dataset yes The configuration of dataset
model_eval no The configuration of model_eval
metrics yes The metrics used for test case’s evaluation; Type: list; Value Constraint: the list of the

configuration of metric.
incremen-
tal_rounds

no Incremental rounds setting for incremental learning paradigm; Type: int; Default value: 2;
Value Constraint: the value must be not less than 2.

For example:

testenv:
dataset configuration
dataset:
...

model eval configuration of incremental learning;
model_eval:
...

metrics configuration for test case's evaluation; list type;
metrics:
...

incremental rounds setting for incremental learning paradigm; int type; default␣
→˓value is 2;
the value must be not less than 2;
incremental_rounds: 2

43

https://github.com/kubeedge/ianvs/blob/main/docs/user_interface/how-to-config-testenv.md#the-configuration-of-dataset
https://github.com/kubeedge/ianvs/blob/main/docs/user_interface/how-to-config-testenv.md#the-configuration-of-model_eval
https://github.com/kubeedge/ianvs/blob/main/docs/user_interface/how-to-config-testenv.md#the-configuration-of-metric
https://github.com/kubeedge/ianvs/blob/main/docs/user_interface/how-to-config-testenv.md#the-configuration-of-metric

Ianvs, Release v0.1

10.1.1 The configuration of dataset

Property Required Description
train_url yes The url address of train dataset index; Type: string
test_url yes The url address of test dataset index; Type: string

For example:

dataset configuration
dataset:
the url address of train dataset index; string type;
train_url: "/ianvs/dataset/train_data/index.txt"
the url address of test dataset index; string type;
test_url: "/ianvs/dataset/test_data/index.txt"

10.1.2 The configuration of model_eval

Prop-
erty

Re-
quired

Description

model_metricyes The Metric used for model evaluation; The configuration of metric.
thresh-
old

yes Threshold of condition for triggering inference model to update; Type: float/int

operator yes Operator of condition for triggering inference model to update; Type: string; Value Con-
straint: the values are “>=”, “>”, “<=”, “<” and “=”.

For example:

model eval configuration of incremental learning;
model_eval:
metric used for model evaluation
model_metric:
...

condition of triggering inference model to update
threshold of the condition; types are float/int
threshold: 0.01
operator of the condition; string type;
values are ">=", ">", "<=", "<" and "=";
operator: ">="

10.1.3 The configuration of metric

Property Required Description
name yes Metric name; Type: string; Value Constraint: a python module name
url no The url address of python module file; Type: string.

For example:

44 Chapter 10. How to config testenv

https://github.com/kubeedge/ianvs/blob/main/docs/user_interface/how-to-config-testenv.md#the-configuration-of-metric

Ianvs, Release v0.1

metric used for model evaluation
model_metric:
metric name; string type;
name: "f1_score"
the url address of python file
url: "./examples/pcb-aoi/incremental_learning_bench/testenv/f1_score.py"

10.2 Show example

testenv.yaml
testenv:
dataset configuration
dataset:
the url address of train dataset index; string type;
train_url: "/ianvs/dataset/train_data/index.txt"
the url address of test dataset index; string type;
test_url: "/ianvs/dataset/test_data/index.txt"

model eval configuration of incremental learning;
model_eval:
metric used for model evaluation
model_metric:
metric name; string type;
name: "f1_score"
the url address of python file
url: "./examples/pcb-aoi/incremental_learning_bench/testenv/f1_score.py"

condition of triggering inference model to update
threshold of the condition; types are float/int
threshold: 0.01
operator of the condition; string type;
values are ">=", ">", "<=", "<" and "=";
operator: ">="

metrics configuration for test case's evaluation; list type;
metrics:
metric name; string type;
- name: "f1_score"
the url address of python file
url: "./examples/pcb-aoi/incremental_learning_bench/testenv/f1_score.py"

- name: "samples_transfer_ratio"

incremental rounds setting for incremental learning paradigm; int type; default␣
→˓value is 2;
incremental_rounds: 2

10.2. Show example 45

Ianvs, Release v0.1

46 Chapter 10. How to config testenv

CHAPTER

ELEVEN

HOW TO CONFIG BENCHMARKINGJOB

The algorithm developer is able to test his/her own targeted algorithm using the following configuration information.

11.1 The configuration of benchmarkingjob

Prop-
erty

Re-
quired

Description

name yes Job name of benchmarking; Type: string
workspace no The url address of job workspace that will reserve the output of tests; Type: string; Default

value: ./workspace
testenv yes The url address of test environment configuration file; Type: string; Value Constraint: The

file format supports yaml/yml.
test_object yes The configuration of test_object
rank yes The configuration of ranking leaderboard

For example:

benchmarkingjob:
job name of benchmarking; string type;
name: "benchmarkingjob"
the url address of job workspace that will reserve the output of tests; string type;
default value: "./workspace"
workspace: "/ianvs/incremental_learning_bench/workspace"

the url address of test environment configuration file; string type;
the file format supports yaml/yml;
testenv: "./examples/pcb-aoi/incremental_learning_bench/testenv/testenv.yaml"
the configuration of test object
test_object:
...

the configuration of ranking leaderboard
rank:
...

47

https://github.com/kubeedge/ianvs/blob/main/docs/user_interface/how-to-config-benchmarkingjob.md#the-configuration-of-test_object
https://github.com/kubeedge/ianvs/blob/main/docs/user_interface/how-to-config-benchmarkingjob.md#the-configuration-of-rank

Ianvs, Release v0.1

11.1.1 The configuration of test_object

Prop-
erty

Re-
quired

Description

type yes Type of test object; Type: string; Value Constraint: Currently the option of value is “algo-
rithms”,the others will be added in succession.

algo-
rithms

no Test algorithm configuration; Type: list

For example:

the configuration of test object
test_object:
test type; string type;
currently the option of value is "algorithms",the others will be added in succession.
type: "algorithms"
test algorithm configuration files; list type;
algorithms:
...

11.1.2 The configuration of algorithms

Prop-
erty

Re-
quired

Description

name yes Algorithm name; Type: string
url yes The url address of test algorithm configuration file; Type: string; Value Constraint: The file

format supports yaml/yml.

For example:

test algorithm configuration files; list type;
algorithms:
algorithm name; string type;
- name: "fpn_incremental_learning"
the url address of test algorithm configuration file; string type;
the file format supports yaml/yml
url: "./examples/pcb-aoi/incremental_learning_bench/testalgorithms/fpn/fpn_algorithm.

→˓yaml"

48 Chapter 11. How to config benchmarkingjob

https://github.com/kubeedge/ianvs/blob/main/docs/user_interface/how-to-config-benchmarkingjob.md#the-configuration-of-algorithms

Ianvs, Release v0.1

11.1.3 The configuration of rank

Prop-
erty

Re-
quired

Description

sort_by yes Rank leaderboard with metric of test case’s evaluation and order; Type: list; Value Constraint:
The sorting priority is based on the sequence of metrics in the list from front to back.

visual-
ization

yes The configuration of visualization

se-
lected_dataitem

yes The configuration of selected_dataitem; The user can add his/her interested dataitems in terms of
“paradigms”, “modules”, “hyperparameters” and “metrics”, so that the selected columns will be
shown.

save_modeyes save mode of selected and all dataitems in workspace ./rank; Type: string; Value Constraint: Cur-
rently the options of value are as follows: 1> “selected_and_all”: save selected and all dataitems.
2> “selected_only”: save selected dataitems.

For example:

the configuration of ranking leaderboard
rank:
rank leaderboard with metric of test case's evaluation and order ; list type;
the sorting priority is based on the sequence of metrics in the list from front to␣

→˓back;
sort_by: [{ "f1_score": "descend" }, { "samples_transfer_ratio": "ascend" }]
visualization configuration
visualization:

...
selected dataitem configuration
The user can add his/her interested dataitems in terms of "paradigms", "modules",

→˓"hyperparameters" and "metrics",
so that the selected columns will be shown.
selected_dataitem:

...
save mode of selected and all dataitems in workspace `./rank` ; string type;
currently the options of value are as follows:
1> "selected_and_all": save selected and all dataitems;
2> "selected_only": save selected dataitems;
save_mode: "selected_and_all"

11.1.4 The configuration of visualization

Prop-
erty

Re-
quired

Description

mode no Mode of visualization in the leaderboard. There are quite a few possible dataitems in the leader-
board. Not all of them can be shown simultaneously on the screen; Type: string; Default value:
selected_only

methodno Method of visualization for selected dataitems; Type: string; Value Constraint: Currently the options
of value are as follows: 1> “print_table”: print selected dataitems.

For example:

11.1. The configuration of benchmarkingjob 49

https://github.com/kubeedge/ianvs/blob/main/docs/user_interface/how-to-config-benchmarkingjob.md#the-configuration-of-visualization
https://github.com/kubeedge/ianvs/blob/main/docs/user_interface/how-to-config-benchmarkingjob.md#the-configuration-of-selected_dataitem

Ianvs, Release v0.1

visualization configuration
visualization:
mode of visualization in the leaderboard; string type;
There are quite a few possible dataitems in the leaderboard. Not all of them can be␣
→˓shown simultaneously on the screen.
In the leaderboard, we provide the "selected_only" mode for the user to configure what␣
→˓is shown or is not shown.
mode: "selected_only"
method of visualization for selected dataitems; string type;
currently the options of value are as follows:
1> "print_table": print selected dataitems;
method: "print_table"

11.1.5 The configuration of selected_dataitem

Prop-
erty

Re-
quired

Description

paradigmsyes Select paradigms in the leaderboard; Type: list; Default value: [“all”]; Value Constraint: Currently
the options of value are as follows: 1> “all”: select all paradigms in the leaderboard. 2> paradigms
in the leaderboard, e.g., “singletasklearning”.

mod-
ules

yes Select modules in the leaderboard; Type: list; Default value: [“all”]; Value Constraint: Currently
the options of value are as follows: 1> “all”: select all hyperparameters in the leaderboard. 2>
hyperparameters in the leaderboard, e.g., “momentum”.

hyper-
pa-
rame-
ters

yes Select hyperparameters in the leaderboard; Type: list; Default value: [“all”]; Value Constraint:
Currently the options of value are as follows: 1> “all”: select all hyperparameters in the leaderboard.
2> hyperparameters in the leaderboard, e.g., “momentum”.

met-
rics

yes Select metrics in the leaderboard; Type: list; Default value: [“all”]; Value Constraint: Currently
the options of value are as follows: 1> “all”: select all metrics in the leaderboard. 2> metrics in the
leaderboard, e.g., “f1_score”.

selected dataitem configuration
The user can add his/her interested dataitems in terms of "paradigms", "modules",
→˓"hyperparameters" and "metrics",
so that the selected columns will be shown.
selected_dataitem:
currently the options of value are as follows:
1> "all": select all paradigms in the leaderboard;
2> paradigms in the leaderboard, e.g., "singletasklearning"
paradigms: ["all"]
currently the options of value are as follows:
1> "all": select all modules in the leaderboard;
2> modules in the leaderboard, e.g., "basemodel"
modules: ["all"]
currently the options of value are as follows:
1> "all": select all hyperparameters in the leaderboard;
2> hyperparameters in the leaderboard, e.g., "momentum"
hyperparameters: ["all"]
currently the options of value are as follows:
1> "all": select all metrics in the leaderboard;

(continues on next page)

50 Chapter 11. How to config benchmarkingjob

Ianvs, Release v0.1

(continued from previous page)

2> metrics in the leaderboard, e.g., "F1_SCORE"
metrics: ["f1_score", "samples_transfer_ratio"]

11.2 Show the example

benchmarkingjob:
job name of benchmarking; string type;
name: "benchmarkingjob"
the url address of job workspace that will reserve the output of tests; string type;
default value: "./workspace"
workspace: "/ianvs/incremental_learning_bench/workspace"

the url address of test environment configuration file; string type;
the file format supports yaml/yml;
testenv: "./examples/pcb-aoi/incremental_learning_bench/testenv/testenv.yaml"

the configuration of test object
test_object:
test type; string type;
currently the option of value is "algorithms",the others will be added in␣

→˓succession.
type: "algorithms"
test algorithm configuration files; list type;
algorithms:
algorithm name; string type;
- name: "fpn_incremental_learning"
the url address of test algorithm configuration file; string type;
the file format supports yaml/yml
url: "./examples/pcb-aoi/incremental_learning_bench/testalgorithms/fpn/fpn_

→˓algorithm.yaml"

the configuration of ranking leaderboard
rank:
rank leaderboard with metric of test case's evaluation and order ; list type;
the sorting priority is based on the sequence of metrics in the list from front to␣

→˓back;
sort_by: [{ "f1_score": "descend" }, { "samples_transfer_ratio": "ascend" }]

visualization configuration
visualization:
mode of visualization in the leaderboard; string type;
There are quite a few possible dataitems in the leaderboard. Not all of them can␣

→˓be shown simultaneously on the screen.
In the leaderboard, we provide the "selected_only" mode for the user to␣

→˓configure what is shown or is not shown.
mode: "selected_only"
method of visualization for selected dataitems; string type;
currently the options of value are as follows:
1> "print_table": print selected dataitems;
method: "print_table"

(continues on next page)

11.2. Show the example 51

Ianvs, Release v0.1

(continued from previous page)

selected dataitem configuration
The user can add his/her interested dataitems in terms of "paradigms", "modules",

→˓"hyperparameters" and "metrics",
so that the selected columns will be shown.
selected_dataitem:
currently the options of value are as follows:
1> "all": select all paradigms in the leaderboard;
2> paradigms in the leaderboard, e.g., "singletasklearning"
paradigms: ["all"]
currently the options of value are as follows:
1> "all": select all modules in the leaderboard;
2> modules in the leaderboard, e.g., "basemodel"
modules: ["all"]
currently the options of value are as follows:
1> "all": select all hyperparameters in the leaderboard;
2> hyperparameters in the leaderboard, e.g., "momentum"
hyperparameters: ["all"]
currently the options of value are as follows:
1> "all": select all metrics in the leaderboard;
2> metrics in the leaderboard, e.g., "f1_score"
metrics: ["f1_score", "samples_transfer_ratio"]

save mode of selected and all dataitems in workspace `./rank` ; string type;
currently the options of value are as follows:
1> "selected_and_all": save selected and all dataitems;
2> "selected_only": save selected dataitems;
save_mode: "selected_and_all"

52 Chapter 11. How to config benchmarkingjob

CHAPTER

TWELVE

HOW TO USE IANVS COMMAND LINE

12.1 List available commands

Command line: ianvs -h For example:

$ ianvs -h
usage: ianvs [-h] [-f [BENCHMARKING_CONFIG_FILE]] [-v]

AI Benchmarking Tool

optional arguments:
-h, --help show this help message and exit
-f [BENCHMARKING_CONFIG_FILE], --benchmarking_config_file [BENCHMARKING_CONFIG_FILE]

run a benchmarking job, and the benchmarking config
file must be yaml/yml file.

-v, --version show program version info and exit.

12.2 Show the version of ianvs

Command line: ianvs -v For example:

$ ianvs -v
0.1.0

12.3 Run a benchmarking job

Command line: ianvs -f [BENCHMARKING_CONFIG_FILE] For example:

ianvs -f examples/pcb-aoi/singletask_learning_bench/benchmarkingjob.yaml

The final output might look like:

53

Ianvs, Release v0.1

rank algo-
rithm

f1_scoreparadigmbase-
model

learn-
ing_rate

mo-
men-
tum

time url

1 fpn_singletask_learning0.8396sin-
gle-
tasklearn-
ing

FPN 0.1 0.5 2022-
07-07
20:33:53

/ianvs/pcb-aoi/singletask_learning_bench/workspace/benchmarkingjob/fpn_singletask_learning/49eb5ffd-
fdf0-11ec-8d5d-fa163eaa99d5

2 fpn_singletask_learning0.8353sin-
gle-
tasklearn-
ing

FPN 0.1 0.95 2022-
07-07
20:31:08

/ianvs/pcb-aoi/singletask_learning_bench/workspace/benchmarkingjob/fpn_singletask_learning/49eb5ffc-
fdf0-11ec-8d5d-fa163eaa99d5

Refer to details of example.

54 Chapter 12. How to use Ianvs command line

../guides/quick-start.html

CHAPTER

THIRTEEN

LEADERBOARD OF SINGLE TASK LEARNING

rank algorithm f1_score paradigm base-
model

learn-
ing_rate

momen-
tum

time

1 fpn_singletask_learning0.8396 single-
tasklearning

FPN 0.1 0.5 2022-07-07
20:33:53

2 fpn_singletask_learning0.8353 single-
tasklearning

FPN 0.1 0.95 2022-07-07
20:31:08

55

Ianvs, Release v0.1

56 Chapter 13. Leaderboard of single task learning

CHAPTER

FOURTEEN

LEADERBOARD OF INCREMENTAL LEARNING

rank algorithm f1_scoresam-
ples_transfer_ratio

paradigm base-
model

learn-
ing_rate

mo-
men-
tum

thresh-
old_img

thresh-
old_box

time

1 fpn_incremental_learning0.9572 0.5263 incre-
mental-
learning

FPN 0.1 0.95 0.9 0.9 2022-
07-07
20:14:12

2 fpn_incremental_learning0.9444 0.5789 incre-
mental-
learning

FPN 0.1 0.5 0.9 0.9 2022-
07-07
20:20:57

57

Ianvs, Release v0.1

58 Chapter 14. Leaderboard of incremental learning

CHAPTER

FIFTEEN

TESTING SINGLE TASK LEARNING IN INDUSTRIAL DEFECT
DETECTION

15.1 About Industrial Defect Detection

In recent years, the manufacturing process is moving towards a higher degree of automation and improved manufac-
turing efficiency. During this development, smart manufacturing increasingly employs computing technologies, for
example, with a higher degree of automation, there is also a higher risk of product defects; thus, a number of machine
learning models have been developed to detect defectives in the manufacturing process.

Defects are an unwanted thing in the manufacturing industry. There are many types of defects in manufacturing like
blow holes, pinholes, burr, shrinkage defects, mould material defects, pouring metal defects, metallurgical defects, etc.
For removing this defective product all industry have their defect detection department. But the main problem is this
inspection process is carried out manually. It is a very time-consuming process and due to human accuracy, this is not
100% accurate. This can be because of the rejection of the whole order. So it creates a big loss for the company.

15.2 About Dataset

The printed circuit board (PCB) industry is not different. Surface-mount technology (SMT) is a technology that auto-
mates PCB production in which components are mounted or placed onto the surface of printed circuit boards. Solder
paste printing (SPP) is the most delicate stage in SMT. It prints solder paste on the pads of an electronic circuit panel.
Thus, SPP is followed by a solder paste inspection (SPI) stage to detect defects. SPI scans the printed circuit board for
missing/less paste, bridging between pads, miss alignments, and so forth. Boards with anomaly must be detected, and
boards in good condition should not be disposed of. Thus SPI requires high precision and a high recall.

As an example in this document, we are using the PCB-AoI dataset released by KubeEdge SIG AI members on Kaggle.
See this link for more information on this dataset. Below also shows two example figures in the dataset.

59

https://www.kaggle.com/datasets/kubeedgeianvs/pcb-aoi
../scenarios/industrial-defect-detection/pcb-aoi.html

Ianvs, Release v0.1

15.3 About Single Task Learning

Single task learning is a traditional learning pooling all data together to train a single model. It typically includes a
specialist model laser-focused on a single task and requires large amounts of task-specific labeled data, which is not
always available in the early stage of a distributed synergy AI project.

This report is testing the single task learning algorithm based on FPN_TensorFlow. It is a Tensorflow re-
implementation of Feature Pyramid Networks for Object Detection, which is based on Faster-RCNN. More detailedly,
feature pyramids are a basic component in recognition systems for detecting objects at different scales. But recent
deep learning object detectors have avoided pyramid representations, in part because they are compute and memory
intensive. Researchers have exploited the inherent multi-scale, pyramidal hierarchy of deep convolutional networks to
construct feature pyramids with marginal extra cost. A top-down architecture with lateral connections is developed for
building high-level semantic feature maps at all scales. The architecture, called a Feature Pyramid Network (FPN),
shows significant improvement as a generic feature extractor in several applications. Using FPN in a basic Faster R-
CNN system, the method achieves state-of-the-art single-model results on the COCO detection benchmark without
bells and whistles, surpassing all existing single-task entries including those from the COCO 2016 challenge winners.
In addition, FPN can run at 5 FPS on a GPU and thus is a practical and accurate solution to multi-scale object detection.
The FPN_TensorFlow is also open sourced and completed by YangXue and YangJirui. For those interested in details
of FPN_TensorFlow, an example implementation is available here and is extended with the Ianvs algorithm interface
here. Interested readers can refer to the FPN for more details.

60 Chapter 15. Testing single task learning in industrial defect detection

images/PCB-AoI_example.png
https://github.com/DetectionTeamUCAS/FPN_Tensorflow
https://github.com/ECIL-EdgeAI/FPN_Tensorflow
../algorithms/single-task-learning/fpn.html

Ianvs, Release v0.1

15.4 Benchmark Setting

Key settings of the test environment to single task learning are as follows:

testenv.yaml
testenv:
dataset configuration
dataset:
the url address of train dataset index; string type;
train_url: "/ianvs/dataset/train_data/index.txt"
the url address of test dataset index; string type;
test_url: "/ianvs/dataset/test_data/index.txt"

metrics configuration for test case's evaluation; list type;
metrics:
metric name; string type;
- name: "f1_score"
the url address of python file
url: "./examples/pcb-aoi/singletask_learning_bench/testenv/f1_score.py"

Key settings of the algorithm to single learning are as follows:

algorithm.yaml
algorithm:
paradigm type; string type;
currently the options of value are as follows:
1> "singletasklearning"
2> "incrementallearning"
paradigm_type: "singletasklearning"
the url address of initial model; string type; optional;
initial_model_url: "/ianvs/initial_model/model.zip"

algorithm module configuration in the paradigm; list type;
modules:
kind of algorithm module; string type;
currently the options of value are as follows:
1> "basemodel"
- type: "basemodel"
name of python module; string type;
example: basemodel.py has BaseModel module that the alias is "FPN" for this␣

→˓benchmarking;
name: "FPN"
the url address of python module; string type;
url: "./examples/pcb-aoi/singletask_learning_bench/testalgorithms/fpn/basemodel.py"

hyperparameters configuration for the python module; list type;
hyperparameters:
name of the hyperparameter; string type;
- momentum:

values of the hyperparameter; list type;
types of the value are string/int/float/boolean/list/dictionary
values:
- 0.95

(continues on next page)

15.4. Benchmark Setting 61

Ianvs, Release v0.1

(continued from previous page)

- 0.5
hyperparameters configuration files; dictionary type;

- other_hyperparameters:
the url addresses of hyperparameters configuration files; list type;
type of the value is string;
values:
- "./examples/pcb-aoi/singletask_learning_bench/testalgorithms/fpn/fpn_

→˓hyperparameter.yaml"

15.5 Benchmark Result

We release the leaderboard here.

62 Chapter 15. Testing single task learning in industrial defect detection

../leaderboards/leaderboard-in-industrial-defect-detection-of-PCB-AoI/leaderboard-of-single-task-learning.html

CHAPTER

SIXTEEN

TESTING INCREMENTAL LEARNING IN INDUSTRIAL DEFECT
DETECTION

16.1 About Industrial Defect Detection

In recent years, the manufacturing process is moving towards a higher degree of automation and improved manufac-
turing efficiency. During this development, smart manufacturing increasingly employs computing technologies, for
example, with a higher degree of automation, there is also a higher risk of product defects; thus, a number of machine
learning models have been developed to detect defectives in the manufacturing process.

Defects are an unwanted thing in the manufacturing industry. There are many types of defects in manufacturing like
blow holes, pinholes, burr, shrinkage defects, mould material defects, pouring metal defects, metallurgical defects, etc.
For removing this defective product all industry have their defect detection department. But the main problem is this
inspection process is carried out manually. It is a very time-consuming process and due to human accuracy, this is not
100% accurate. This can be because of the rejection of the whole order. So it creates a big loss for the company.

16.2 About Dataset

The printed circuit board (PCB) industry is not different. Surface-mount technology (SMT) is a technology that auto-
mates PCB production in which components are mounted or placed onto the surface of printed circuit boards. Solder
paste printing (SPP) is the most delicate stage in SMT. It prints solder paste on the pads of an electronic circuit panel.
Thus, SPP is followed by a solder paste inspection (SPI) stage to detect defects. SPI scans the printed circuit board for
missing/less paste, bridging between pads, miss alignments, and so forth. Boards with anomaly must be detected, and
boards in good condition should not be disposed of. Thus SPI requires high precision and a high recall.

As an example in this document, we are using the PCB-AoI dataset released by KubeEdge SIG AI members on Kaggle.
See this link for more information on this dataset. Below also shows two example figures in the dataset.

63

https://www.kaggle.com/datasets/kubeedgeianvs/pcb-aoi
../scenarios/industrial-defect-detection/pcb-aoi.html

Ianvs, Release v0.1

16.3 About Incremental Learning

Traditionally, the data is collected manually and periodically retrained on the cloud to improve the model effect. How-
ever, data is continuously generated on the edge side. The traditional method wastes a lot of human resources, and the
model update frequency is slow.

Incremental learning allows users to continuously monitor the newly generated data and by configuring some triggering
rules to determine whether to start training, evaluation, and deployment automatically, and continuously improve the
model performance.

Its goals include:

• Automatically retrains, evaluates, and updates models based on the data generated at the edge.

• Support time trigger, sample size trigger, and precision-based trigger.

• Support manual triggering of training, evaluation, and model update.

• Support hard example discovering of unlabeled data, for reducing the manual labeling workload.

This report is testing the basic incremental algorithm based on FPN and interested readers can refer to the basicIL-fpn
for more details.

64 Chapter 16. Testing incremental learning in industrial defect detection

images/PCB-AoI_example.png
../algorithms/incremental-learning/basicIL-fpn.html

Ianvs, Release v0.1

16.4 Benchmark Setting

Key settings of the test environment for incremental learning are as follows:

testenv.yaml
testenv:
dataset configuration
dataset:
the url address of train dataset index; string type;
train_url: "/ianvs/dataset/train_data/index.txt"
the url address of test dataset index; string type;
test_url: "/ianvs/dataset/test_data/index.txt"

model eval configuration of incremental learning;
model_eval:
metric used for model evaluation
model_metric:
metric name; string type;
name: "f1_score"
the url address of python file
url: "./examples/pcb-aoi/incremental_learning_bench/testenv/f1_score.py"

condition of triggering inference model to update
threshold of the condition; types are float/int
threshold: 0.01
operator of the condition; string type;
values are ">=", ">", "<=", "<" and "=";
operator: ">="

metrics configuration for test case's evaluation; list type;
metrics:

metric name; string type;
- name: "f1_score"
the url address of python file
url: "./examples/pcb-aoi/incremental_learning_bench/testenv/f1_score.py"

- name: "samples_transfer_ratio"

incremental rounds setting for incremental learning paradigm.; int type; default␣
→˓value is 2;
incremental_rounds: 2

Key settings of the algorithm to incremental learning are as follows:

algorithm.yaml
algorithm:
paradigm type; string type;
currently the options of value are as follows:
1> "singletasklearning"
2> "incrementallearning"
paradigm_type: "incrementallearning"
incremental_learning_data_setting:
ratio of training dataset; float type.
the default value is 0.8.

(continues on next page)

16.4. Benchmark Setting 65

Ianvs, Release v0.1

(continued from previous page)

train_ratio: 0.8
the method of splitting dataset; string type; optional;
currently the options of value are as follows:
1> "default": the dataset is evenly divided based train_ratio;
splitting_method: "default"

the url address of initial model for model pre-training; string url;
initial_model_url: "/ianvs/initial_model/model.zip"

algorithm module configuration in the paradigm; list type;
modules:
type of algorithm module; string type;
currently the options of value are as follows:
1> "basemodel": contains important interfaces such as train eval predict and␣

→˓more; required module;
- type: "basemodel"
name of python module; string type;
example: basemodel.py has BaseModel module that the alias is "FPN" for this␣

→˓benchmarking;
name: "FPN"
the url address of python module; string type;
url: "./examples/pcb-aoi/incremental_learning_bench/testalgorithms/fpn/basemodel.py

→˓"

hyperparameters configuration for the python module; list type;
hyperparameters:
name of the hyperparameter; string type;
- momentum:

values of the hyperparameter; list type;
types of the value are string/int/float/boolean/list/dictionary
values:
- 0.95
- 0.5

hyperparameters configuration files; dictionary type;
- other_hyperparameters:

the url addresses of hyperparameters configuration files; list type;
type of the value is string;
values:
- "./examples/pcb-aoi/incremental_learning_bench/testalgorithms/fpn/fpn_

→˓hyperparameter.yaml"
2> "hard_example_mining": check hard example when predict ; optional module;

- type: "hard_example_mining"
name of python module; string type;
name: "IBT"
the url address of python module; string type;
url: "./examples/pcb-aoi/incremental_learning_bench/testalgorithms/fpn/hard_

→˓example_mining.py"
hyperparameters configuration for the python module; list type;
hyperparameters:
name of the hyperparameter; string type;
threshold of image; value is [0, 1]
- threshold_img:

values:
(continues on next page)

66 Chapter 16. Testing incremental learning in industrial defect detection

Ianvs, Release v0.1

(continued from previous page)

- 0.9
predict box of image; value is [0, 1]
- threshold_box:

values:
- 0.9

16.5 Benchmark Result

We release the leaderboard here .

16.6 Effect Display

The pcb image has 8 bad defects. See label file for details.

• Before incremental learning, 7 the bad defects have been detected.

16.5. Benchmark Result 67

../leaderboards/leaderboard-in-industrial-defect-detection-of-PCB-AoI/leaderboard-of-incremental-learning.html
https://github.com/kubeedge/ianvs/tree/main/docs/proposals/test-reports/images/20170316-SPI-AOI-19.xml

Ianvs, Release v0.1

• After incremental learning, 8 the bad defects have been detected.

68 Chapter 16. Testing incremental learning in industrial defect detection

./images/before_increment_20170316-SPI-AOI-19.jpeg_fpn.jpg

Ianvs, Release v0.1

16.6. Effect Display 69

./images/after_increment_20170316-SPI-AOI-19.jpeg_fpn.jpg

Ianvs, Release v0.1

70 Chapter 16. Testing incremental learning in industrial defect detection

CHAPTER

SEVENTEEN

HOW TO CONTRIBUTE TEST ENVIRONMENTS

17.1 Overall contribution workflow

1. Apply for a topic. Once you have a new idea about the test environment, you can apply for a topic to discuss it
on SIG AI weekly meeting.

2. Submit proposal. After the idea is fully discussed, the former proposal PR is needed to submit to the Ianvs
repository.

3. Fix proposal review comments. If other Ianvs maintainers leave review comments to the PR, you need to fix
them and get at least 2 reviewers’ /lgtm, and 1 approver’s /approve.

4. Submit code. Then you can implement your code, and a good code style is encouraged.

5. Fix code review comments. Besides the merge requirements of the proposal, CI passing is needed before review-
ing this step.

The following is a typical testenv:

testenv:
dataset configuration
dataset:
the url address of train dataset index; string type;
train_url: "/ianvs/dataset/train_data/index.txt"
the url address of test dataset index; string type;
test_url: "/ianvs/dataset/test_data/index.txt"

model eval configuration of incremental learning;
model_eval:
metric used for model evaluation
model_metric:
metric name; string type;
name: "f1_score"
the url address of python file
url: "./examples/pcb-aoi/incremental_learning_bench/testenv/f1_score.py"

condition of triggering inference model to update
threshold of the condition; types are float/int
threshold: 0.01
operator of the condition; string type;
values are ">=", ">", "<=", "<" and "=";
operator: ">="

(continues on next page)

71

http://github.com/kubeedge/ianvs.git
http://github.com/kubeedge/ianvs.git
http://github.com/kubeedge/ianvs.git

Ianvs, Release v0.1

(continued from previous page)

metrics configuration for test case's evaluation; list type;
metrics:

metric name; string type;
- name: "f1_score"
the url address of python file
url: "./examples/pcb-aoi/incremental_learning_bench/testenv/f1_score.py"

- name: "samples_transfer_ratio"

incremental rounds setting for incremental learning paradigm.; int type; default␣
→˓value is 2;
incremental_rounds: 2

It can be found that for a test, we need to set up the three fields:

• dataset

• model_eval

• metrics

That means, if you want to test on a different dataset, different model, or different metrics, you need a new test envi-
ronment.

17.2 Add a new test environment

Please refer to the examples directory, pcb-aoi is a scenario for testing. We can regard it as a subject for a student that
needs to take an exam, the test env is like an examination paper, and the test job is like the student.

For a subject pcb-aoi, a new examination paper could be added to the subdirectory, on the same level as a
benchmarking job. The detailed steps could be the following:

1. Copy benchmarking job and name benchmarking job_2 or any other intuitive name.

2. Add new algorithms to test algorithms, or Keep the useful algorithm. It can refer to contribute algorithm section
to develop your own algorithm.

3. Copy testenv/testnev.yaml, and modify it based on what you need to test, with different datasets, models, metrics,
and so on.

If all things have been done, and you think that would be a nice “examination paper”, you can create PR to ianvs, to
publish your paper.

Interested “students” from our community will take the exam.

72 Chapter 17. How to contribute test environments

https://github.com/kubeedge/ianvs/tree/main/examples/pcb-aoi

CHAPTER

EIGHTEEN

HOW TO CONTRIBUTRBUTE AN ALGORITHM TO IANVS

Ianvs serves as testing tools for test objects, e.g., algorithms. Ianvs does NOT include code directly on the test object.
Algorithms serve as typical test objects in Ianvs and detailed algorithms are thus NOT included in this Ianvs python file.
As for the details of example test objects, e.g., algorithms, please refer to third party packages in the Ianvs example.
For example, for AI workflow and interface please refer to sedna and for module implementation please refer to third
party packages like FPN_TensorFlow and Sedna IBT algorithm.

For algorithm contributors, you can:

1. Release a repo independent of ianvs, but the interface should still follow the SIG AI algorithm interface to launch
ianvs. Here are two examples showing how to develop an algorithm for testing in Ianvs. Here are two examples
show how to development algorithm for testing in Ianvs.

• incremental-learning

• single-task-learning

2. Integrated the targeted algorithm into sedna so that ianvs can use it directly. in this case, you can connect with
sedna owners for help.

Also, if a new algorithm has already been integrated into Sedna, it can be used in Ianvs directly.

73

../proposals/algorithms/incremental-learning/basicIL-fpn.html
../proposals/algorithms/single-task-learning/fpn.html

Ianvs, Release v0.1

74 Chapter 18. How to contributrbute an algorithm to Ianvs

CHAPTER

NINETEEN

HOW TO CONTRIBUTE TEST REPORTS OR LEADERBOARDS

This document helps you to contribute stories, i.e., test reports or leaderboards, for Ianvs. If you follow this guide and
find some problem, it is appreciated to submit an issue to update this file.

19.1 Test Reports

Everyone is welcome to submit and share your own test report to the community.

19.1.1 1. Setup and Testing

Ianvs is managed with git, and to develop locally you will need to install git.

You can check if git is already on your system and properly installed with the following command:

git --version

Clone the Ianvs repo.:

git clone http://github.com/kubeedge/ianvs.git

Please follow the Ianvs setup to install Ianvs, and then run your own algorithm to output test reports.

19.1.2 2. Declare your grades

You may want to compare your testing result and those results on the leaderboard.

Test reports are welcome after benchmarking. It can be submitted here for further review.

19.2 Leaderboards

Leaderboards, i.e., rankings of the test object, are public for everyone to visit. Example:leaderboard.

Except for Ianvs Owners, there are mainly two roles for a leaderboard publication:

1. Developer: submit the test object for benchmarking, including but not limited to materials like algorithm, test
case following Ianvs settings, and interfaces.

2. Maintainer: testing materials provided by developers and releasing the updated leaderboard to the public.

For potential developers,

75

https://git-scm.com/
how-to-install-ianvs.html
../leaderboards/leaderboard-in-industrial-defect-detection-of-PCB-AoI/leaderboard-of-single-task-learning.html
https://github.com/kubeedge/ianvs/tree/main/docs/proposals/test-reports
../leaderboards/leaderboard-in-industrial-defect-detection-of-PCB-AoI/leaderboard-of-single-task-learning.html
https://github.com/kubeedge/ianvs/blob/main/OWNERS

Ianvs, Release v0.1

• Develop your algorithm with ianvs and choose the algorithm to submit.

• Make sure the submitted test object runs properly under the latest version of Ianvs before submission. Maintainers
are not responsible to debug for the submitted objects.

• Do NOT need to submit the new leaderboard. Maintainers are responsible to make the test environment consistent
for all test objects under the same leaderboard and execute the test object to generate a new leaderboard.

• If the test object is ready, you are welcome to contact Ianvs Owners. Ianvs owners will connect you and main-
tainers, in order to receive your test object. Note that when developers submit the test object, developers give
maintainers the right to test them.

For potential maintainers,

• To maintain the consistency of test environments and test objects, the leaderboard submission is at present calling
for acknowledged organizations to apply in charge. Please contact

• Maintainers should be responsible for the result submitted.

• Maintainers should update the leaderboard in a monthly manner.

• Maintainers are NOT allowed to use the test object in purpose out of Ianvs benchmarking without formal autho-
rization from developers.

• Besides submitted objects, maintainers are suggested to test objects released in KubeEdge SIG AI or other classic
solutions released in public.

76 Chapter 19. How to contribute test reports or leaderboards

https://github.com/kubeedge/ianvs/blob/main/OWNERS
../leaderboards/leaderboard-in-industrial-defect-detection-of-PCB-AoI/leaderboard-of-single-task-learning.html

CHAPTER

TWENTY

ROADMAP

Upon the release of ianvs, the roadmap would be as follows

• AUG 2022: Release Another Use Case and Advanced Algorithm Paradigm - Non-structured lifelong learning
paradigm in ianvs

• SEP 2022: Release Another Use Case, Dataset, and Algorithm Paradigm - Another structured dataset and lifelong
learning paradigm in ianvs

• OCT 2022: Release Advanced Benchmark Presentation - shared space for story manager to present your work
in public

• NOV 2022: Release Advanced Algorithm Paradigm - Re-ID with Multi-edge Synergy Inference in ianvs

• DEC 2022: Release Simulation Tools

• JUN 2023: More datasets, algorithms, and test cases with ianvs

• DEC 2023: Standards, coding events, and competitions with ianvs

77

Ianvs, Release v0.1

78 Chapter 20. Roadmap

CHAPTER

TWENTYONE

IANVS V0.1.0 RELEASE

21.1 1. Release the Ianvs distributed synergy AI benchmarking frame-
work.

a) Release test environment management and configuration.

b) Release test case management and configuration.

c) Release test story management and configuration.

d) Release the open-source test case generation tool: Use hyperparameter enumeration to fill in one configuration
file to generate multiple test cases.

21.2 2. Release the PCB-AoI public dataset.

Release the PCB-AoI public dataset, its corresponding preprocessing, and baseline algorithm projects. Ianvs is the first
open-source site for that dataset.

21.3 3. Support two new paradigms in test environments and test
cases.

a) Test environments and test cases that support the single-task learning paradigm.

b) Test environments and test cases that support the incremental learning paradigm.

21.4 4. Release PCB-AoI benchmark cases based on the two new
paradigms.

a) Release PCB-AoI benchmark cases based on single-task learning, including leaderboards and test reports.

b) Release PCB-AoI benchmark cases based on incremental learning, including leaderboards and test reports.

79

Ianvs, Release v0.1

80 Chapter 21. Ianvs v0.1.0 release

CHAPTER

TWENTYTWO

RELATED LINKS

22.1 Release

KubeEdge AI SIG

22.2 Meetup and Conference

HDC.Cloud 2021: AI KubeEdge SednaAI50%

22.3 Distributed Synergy AI Toolkit: Sedna

Sedna0.4.0 KubeEdgeSedna 0.3.0 AIKubeEdgeSedna 0.1 AIKubeEdgeSedna

81

https://mp.weixin.qq.com/s/t10_ZrZW42AZoYnisVAbpg
https://xie.infoq.cn/article/b22e72afe8de50ca34269bb21
https://www.huaweicloud.com/zhishi/hdc2021-Track-24-18.html
https://mp.weixin.qq.com/s/_m5q0t0yYY7gnfQUAssjFg
https://mp.weixin.qq.com/s/kSFL_pf2BTyVvH5c9zv0Jg
https://mp.weixin.qq.com/s/3Ei8ynSAxnfuoIWYdb7Gpg
https://mp.weixin.qq.com/s/FX2DOsctS_Z7CKHndFByRw

Ianvs, Release v0.1

82 Chapter 22. RELATED LINKs

CHAPTER

TWENTYTHREE

INDICES AND TABLES

• genindex

• modindex

• search

83

	Distributed Synergy AI Benchmarking
	Goals
	Scope
	Design Details
	Architecture and Modules
	Definitions of Objects

	Quick Start
	Step 1. Ianvs Preparation
	Step 2. Dataset and Model Preparation
	Step 3. Ianvs Execution and Presentation

	What is next
	How to install Ianvs
	Prerequisites
	Install ianvs on Linux
	Create virtualenv
	Download ianvs project
	Install third-party dependencies
	Install ianvs
	Check the installation

	About Windows

	How to test algorithms with Ianvs
	Step 1. Test Environment Preparation
	Step 2. Test Case Preparation
	Example 1. Testing a hard-example-mining algorithm in incremental learning
	Example 2. Testing a neural-network-based modeling algorithm in incremental learning

	Step 3. ianvs Configuration
	Step 4. Execution and Presentation

	Industrial defect detection: the PCB-AoI dataset
	Authors
	Background
	Data Explorer

	Single task learning: FPN
	Implementation
	Customize algorithm

	Incremental learning: BasicIL-FPN
	Implementation

	How to config algorithm
	The configuration of algorithm
	The configuration of incremental_learning_data_setting
	The configuration of module
	The configuration of hyperparameters

	Show example

	How to config testenv
	The configuration of testenv
	The configuration of dataset
	The configuration of model_eval
	The configuration of metric

	Show example

	How to config benchmarkingjob
	The configuration of benchmarkingjob
	The configuration of test_object
	The configuration of algorithms
	The configuration of rank
	The configuration of visualization
	The configuration of selected_dataitem

	Show the example

	How to use Ianvs command line
	List available commands
	Show the version of ianvs
	Run a benchmarking job

	Leaderboard of single task learning
	Leaderboard of incremental learning
	Testing single task learning in industrial defect detection
	About Industrial Defect Detection
	About Dataset
	About Single Task Learning
	Benchmark Setting
	Benchmark Result

	Testing incremental learning in industrial defect detection
	About Industrial Defect Detection
	About Dataset
	About Incremental Learning
	Benchmark Setting
	Benchmark Result
	Effect Display

	How to contribute test environments
	Overall contribution workflow
	Add a new test environment

	How to contributrbute an algorithm to Ianvs
	How to contribute test reports or leaderboards
	Test Reports
	1. Setup and Testing
	2. Declare your grades

	Leaderboards

	Roadmap
	Ianvs v0.1.0 release
	1. Release the Ianvs distributed synergy AI benchmarking framework.
	2. Release the PCB-AoI public dataset.
	3. Support two new paradigms in test environments and test cases.
	4. Release PCB-AoI benchmark cases based on the two new paradigms.

	RELATED LINKs
	Release
	Meetup and Conference
	Distributed Synergy AI Toolkit: Sedna

	Indices and tables

